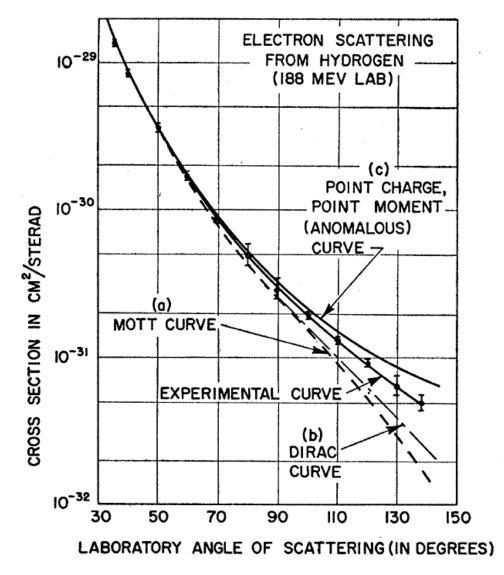


COMPASS++ / AMBER and a Measurement of the Proton Radius in High-Energy µp Scattering

- The quest for hadron structure at Brookhaven and around the world: a few triggers
- An unusual approach to precision low-Q² physics using a highenergy muon beam
- COMPASS and a Letter of Intent for the long-range future: highlights from a broad physics program
- some test setup results



Measurement of the Proton Radius in ep-Scattering

1956 at SLAC Measurement of elastic e-p scattering shows first structure effect, $< r_p > \approx 0.8$ fm

R. Hofstadter

Fourier transform of the charge distribution

Extension of charge and magnetization is related to form factor $F(q^2)$

Jan Friedrich

Theory of the time – 1958ff

VOLUME 2, NUMBER 8

PHYSICAL REVIEW LETTERS

April 15, 1959

EFFECT OF A PION-PION SCATTERING RESONANCE ON NUCLEON STRUCTURE*

William R. Frazer and Jose R. Fulco[†]

VOLUME 6, NUMBER 7

PHYSICAL REVIEW LETTERS

April 1, 1961

ELECTROMAGNETIC FORM FACTORS OF THE NUCLEON AND PION-PION INTERACTION

S. Bergia A. Stanghellini S. Fubini C. Villi

We wish to propose a simple model for the electromagnetic structure of the nucleon, based on dispersion theory and on a strong pion-pion interaction. The model is a synthesis of several theoretical ideas proposed by Frazer and Fulco,¹ Nambu,² and Chew.³

Let us first of all summarize some general properties of the nucleon form factors. We write the interaction of the nucleon with the electromagnetic field in the form:

$$\langle p' | j_{\mu} | p \rangle A_{\mu}$$

= $i \overline{u} (p') [G_1(t) \gamma_{\mu} + G_2(t) \sigma_{\mu\nu} k_{\nu}] u(p) A_{\mu},$ (1)

where p', p, and k are the four-momenta of the final nucleon, initial nucleon, and photon, respectively, and $t = k^2 = (p' - p)^2$. The G_i still are operators in the isospin space:

$$G_i = G_i^S + G_i^V \tau_3,$$

and so

26.01.19

$$G_i^{p}=G_i^{S}+G_i^{V};\quad G_i^{n}=G_i^{S}-G_i^{V}.$$

functions tend to the static charge and magnetic moment of the nucleon:

$$\begin{split} G_{1}^{\ p}(0) &= e, \quad G_{1}^{\ n}(0) = 0, \\ G_{2}^{\ p}(0) &= \mu_{p} = eg_{p}^{\ }/2M, \quad G_{2}^{\ n}(0) = \mu_{n} = eg_{n}^{\ }/2M, \\ G_{1}^{\ S}(0) &= G_{1}^{\ V}(0) = e/2, \\ G_{2}^{\ S}(0) &= (\mu_{p}^{\ } + \mu_{n}^{\ })/2 = eg_{S}^{\ }/2M, \\ G_{2}^{\ V}(0) &= (\mu_{p}^{\ } - \mu_{n}^{\ })/2 = eg_{V}^{\ }/2M, \\ g_{p}^{\ } = 1.79, \quad g_{n}^{\ } = -1.91, \\ g_{S}^{\ } = -0.06, \quad g_{V}^{\ } = 1.85, \end{split}$$

The functions G(t) are related to the usual Hofstadter form factors F(t) by the following definitions:

$$G_i^{p,n}(t) = G_i^{p,n}(0)F_i^{p,n}(t).$$
 (3)

Jan Friedrich

Theory of the time – 1958ff

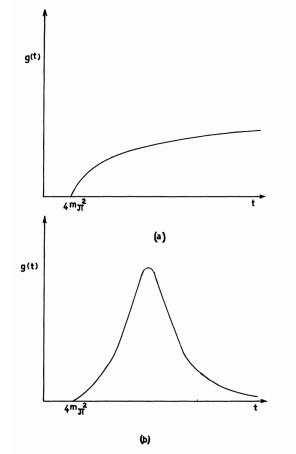


FIG. 1. Schematic representations of g(t) in arbitrary scale. (a) Uncorrelated pions; (b) strong pionpion resonance.

that it is possible to interpret both isovector form factors F_1^V and F_2^V by means of the approximate form, which has a pole at $t_R \simeq 22m_{\pi}^2$:

$$G_{1}^{V} \simeq \frac{e}{2} \left(-0.2 + \frac{1.2}{1 - (t/22m_{\pi}^{-2})} \right),$$

$$G_{2}^{V} \simeq \frac{eg_{V}}{2M} \left(-0.2 + \frac{1.2}{1 - (t/22m_{\pi}^{-2})} \right).$$
(7)

By taking this attitude, the resonant state at $E_R \simeq 4.7 m_{\pi}$ will be attributed to a T=1, J=1 two-pion state.

This is the first version of a vectormeson dominance (VMD) model for the nucleon form factors, including only the rho resonance. Later

- 1974 Höhler
- 1995 Mergell, Meißner, Drechsel
- 2014 Lorenz, Meißner

OMPAS

Models for the Nucleon Form Factors employing Dispersion Relations



Nuclear Physics A 596 (1996) 367-396

Dispersion-theoretical analysis of the nucleon electromagnetic form factors *

P. Mergell^{a,1}, Ulf-G. Meißner^{b,2}, D. Drechsel^{a,3}

^a Universität Mainz, Institut für Kernphysik, J.-J.-Becher Weg 45, D-55099 Mainz, Germany ^b Universität Bonn, Institut für Theoretische Kernphysik, Nussallee 14-16, D-53115 Bonn, Germany

ig. 1. Two-pion cut contribution to the isovector nucleon form factors.

	Re	ceived 21 June	1995			ig. 1. 1	wo-pion cut contribution to the isovector in
Table 2 Proton and new	tron radii	ê	accurate	values	from a fe	ew-parar	meter fit to all-Q ² data
	r_E^p [fm]	r_M^p [fm]	r_M^n [fm]	<i>r</i> ^p ₁ [fm]	r_2^p [fm]	<i>r</i> ^{<i>n</i>} ₂ [fm]	_
Best fit	0.847	0.836	0.889	0.774	0.894	0.893	_
Ref. [21]	0.836	0.843	0.840	0.761	0.883	0.876	_

For the data in the low-energy region, the contribution of the Q^4 term to the proton electric form factor is marginal (< 0.3%). This leads to an rather accurate value for $\langle r_F^2 \rangle_p$,

$$\langle r_E^2 \rangle_p = (0.862 \pm 0.012)^2 \text{fm}^2$$
.

low-Q² experimental of-the-time value discussed

With that constraint, the authors of Ref. [15] performed a four-pole fit (with two masses fixed at $M_{\rho} = 0.765$ GeV and $M_{\rho'} = 1.31$ GeV) to the available data for the proton electric and magnetic form factors up to $Q^2 \simeq 5$ GeV². This allowed to reconstruct the

Side remark: discovery of the $\rho(770)$ resonance

VOLUME 6, NUMBER 11

PHYSICAL REVIEW LETTERS

JUNE 1, 1961

PION-PION INTERACTION IN PION PRODUCTION BY π^+ -p COLLISIONS*

D. Stonehill, C. Baltay, H. Courant, W. Fickinger, E. C. Fowler, H. Kraybill, J. Sandweiss, J. Sanford,[†] and H. Taft

Yale University, New Haven, Connecticut and Brookhaven National Laboratory, Upton, New York (Received May 12, 1961)

Since the first conjectures¹ that rise in the total π -p cross section between 300 and 600 Mev might be caused by a pion-pion interaction, this subject has received considerable attention. Theoretical analysis² of high-energy electron scattering on protons and neutrons has predicted a resonance in the pion-pion interaction at a total di-pion energy (ω) of 4 to 5 pion masses, with isotopic spin and angular momentum both equal to one. Several analyses of π^- -p experiments³ in the 1-Bev energy range have tended to confirm this prediction, and application⁴ of the Chew-Low method has indicated a steep rise in the pion-pion cross section above $\omega = 4$. Recent work⁵ with 1.9-Bev π^- -p collisions shows a peak in the pion-pion interaction at $\omega \sim 5.5$. We report here evidence of pion-pion interaction in π^+ -p collisions at three separate energies, which show striking effects attributable to a pionpion resonance with ω of about 5.5 pion masses.

the final identification. Cross sections for the various reactions, based upon the first compilation of these events, are shown in Table I.

The influence of pion-pion interaction will appear most readily in the single pion production processes: $\pi^+ + p \rightarrow p + \pi^+ + \pi^0$ and $\pi^+ + p \rightarrow n + \pi^+ + \pi^+$.

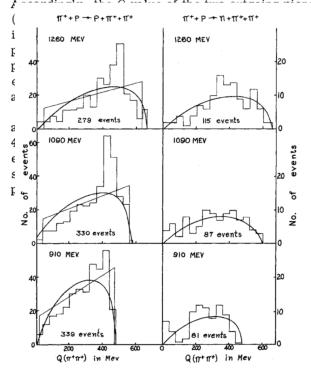
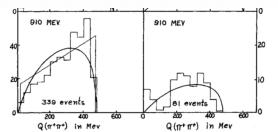



FIG. 1. Distribution of pion-pion Q values (that is, kinetic energy of the two outgoing pions in their mutual center-of-momentum system) for the reactions $\pi^+ + p \rightarrow p + \pi^+ + \pi^0$ and $\pi^+ + p \rightarrow n + \pi^+ + \pi^+$ at 910-Mev, 1090-Mev, and 1260-Mev laboratory kinetic energy of the incident pion. The curved lines are the Q distribution resulting from uniform distribution of the secondary particles in momentum space. The straight lines give the Q distribution resulting from isotropic decay of a pion-proton isobar of unique mass 1230 Mev.

Side remark: discovery of the $\rho(770)$ resonance

VOLUME 6, NUM



Since the fir π^--p cross se be caused by : has received (analysis² of hi protons and n in the pion-pic $ergv (\omega) of 41$ and angular m analyses of $\pi^$ range have ter application⁴ of $\omega = 4$. Recent shows a peak in π^+ -p collisi which show st pion resonanc

Emilio Gino Segrè

"The antiproton discovery [1956] was followed by studies of its properties and interactions, as well as those of the antineutron. In subsequent experiments Chamberlain and Wiegand worked independently of Segrè, with Chamberlain rejoining the Segrè group after a few years but on an equal footing in what became the Segrè-Chamberlain group. In the early 1960s Ypsilantis, with Wiegand and students, mounted an ambitious a steep rise in counter experiment to study pion-pion interactions through pion production by pions. Theorists had described the electromagnetic form factors of the proton and neutron in terms of a spin-one resonance between pions with an We report her energy in the range of 500-600 MeV. The experiment was designed to find such a resonant state. In the end the resonance proved to be at 760 MeV, near the upper limit of the apparatus. The discovery of the rho meson, as the state was called, was accomplished by others using hydrogen bubble chambers. The counter experiment confirmed the bubble chamber results but could add little. Segrè blamed the theorists for their incorrect prediction of the

resonant energy." (from: J. David Jackson, "Emilio Gino Segrè 1905 – 1989")

-pion Q values (that is, ing pions in their mutual for the reactions $\pi^+ + p$ π^+ at 910-Mev, 1090-Mev, c energy of the incident $\Rightarrow Q$ distribution resulting e secondary particles in it lines give the Q distridecay of a pion-proton v.

OMPASS

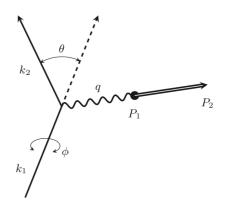
28.01.19

In the footsteps of Hofstadter: electron scattering at the Mainz Microtron MAMI

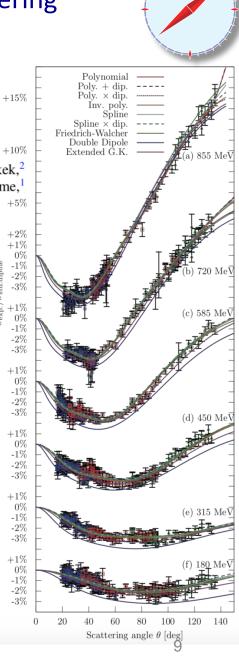
PHYSICAL REVIEW C 90, 015206 (2014)

Electric and magnetic form factors of the proton

J. C. Bernauer,^{1,*} M. O. Distler,^{1,†} J. Friedrich,¹ Th. Walcher,¹ P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ +^{10%} D. Bosnar,² L. Debenjak,³ L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ M. Gómez Rodríguez de la Paz,¹ J. M. Friedrich,⁵ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{3,6} and M. Weinriefer¹ +^{5%} (A1 Collaboration)


¹Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany ²Department of Physics, University of Zagreb, 10002 Zagreb, Croatia ³Jožef Stefan Institute, Ljubljana, Slovenia

⁴LPC-Clermont, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière Cedex, France

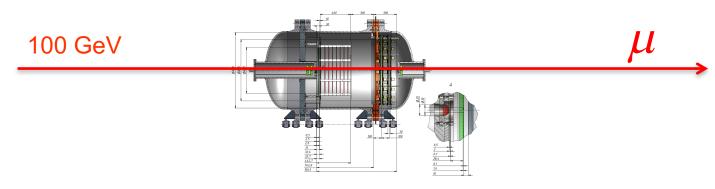

⁵CERN, CH-1211 Geneva 23, Switzerland, on leave of absence from Physik-Department, Technische Universität München,

85748 Garching, Germany

⁶Department of Physics, University of Ljubljana, Slovenia (Received 26 July 2013; revised manuscript received 24 March 2014; published 29 July 2014)

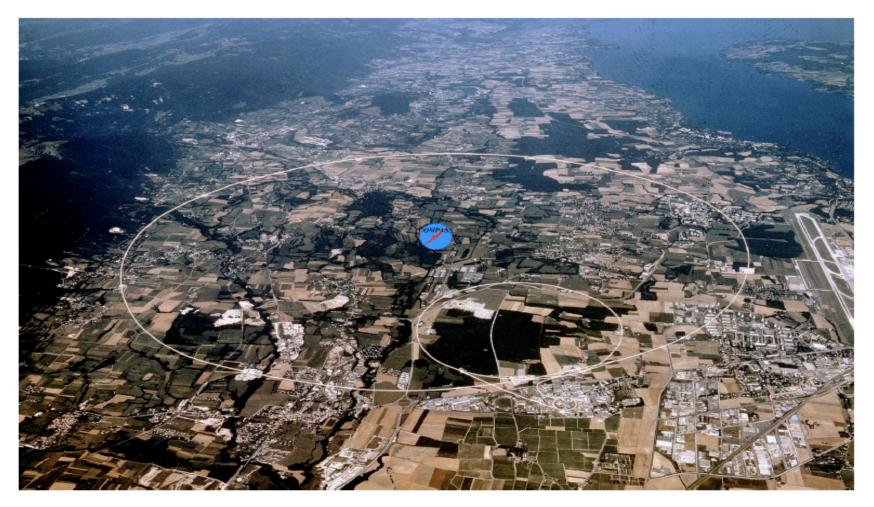
COMPASS

Jan Friedrich



In the footsteps of Hofstadter: ideas for measurement of the low-momentum transfer region

- initial-state radiation (ISR) of the MAMI electron beam: broad ranges of equivalent beam energy and momentum transfer are accessed in the same data
- PRad at Jefferson Lab: electron scattering at 1.1 and 2.2 GeV
- MAMI: detect lowest proton recoil energies, down to 0.5 MeV (i.e. Q²=0.001GeV²), within the target gas: active high-pressure TPC, development by PNPI (St. Petersburg) / GSI
- MUSE at PSI: low-energy muon scattering


proposed now: use the high-pressure TPC with the high-energy COMPASS muon beam

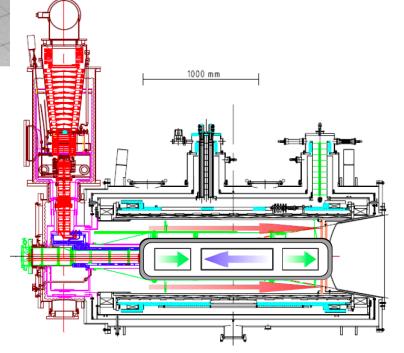
COMPASS QCD facility at CERN (SPS)

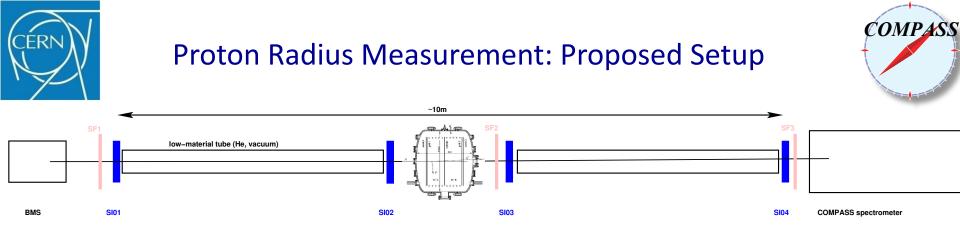
COmmon Muon Proton Apparatus for Structure and Spectroscopy

~220 physicists, 12 countries + CERN, 24 institutions

17 October 2018

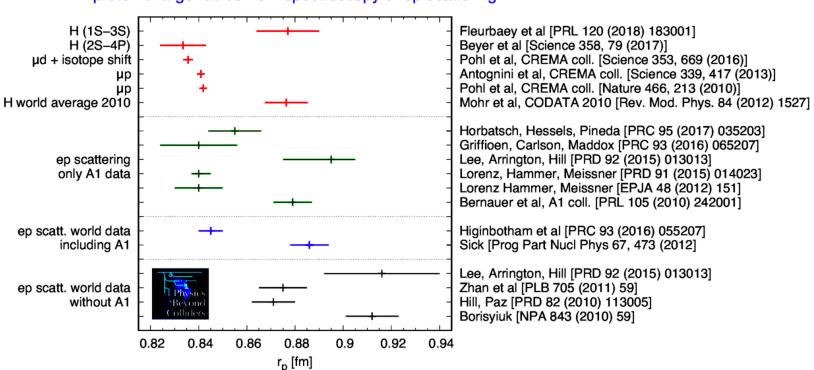
Jan Friedrich




Reminder of the COMPASS physics program

Versatile apparatus to investigate QCD: Two-stage COMPASS Spectrometer

- Muon, electron and hadron beams with momenta 20-250 GeV and intensities up to 10⁸ particles per second
- 2. Solid-state polarised (NH₃ or ⁶LiD), liquid hydrogen and nuclear targets
- 3. Powerful tracking (350 planes) and PID systems (Muon Walls, Calorimeters, RICH)


- muon scattering angles 0.3 (Q²=0.001GeV²) ... 2 mrad (Q²=0.04GeV²) (100 GeV beam, minimal kinematic range, better larger)
- side kick over 5m base line: 1.5 ... 10 mm
- sufficiently large, high-resolution Si detectors, $\Delta x \le 10 \mu m$, x >= 50 mm
- pressurized active high-purity H₂ target
- corresponding track lengths a few cm
- TPC readout on two sides
- beam intensity >= 2e6 muons/second, one year of running

All details are to be fixed employing a realistic Monte-Carlo simulation, including state-of-the-start (?!) event generator

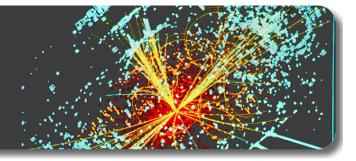
Summary of the present physics case

proton charge radius from spectroscopy or ep scattering

from the CERN future document "PBC summary", December 2018

ESPP and **PBC**

Sign in


CERN Accelerating science

europeanstrategyupdate.web.cern.ch

CERN Council Open Symposium on the Update of European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

CERN-PBC-REPORT-2018-008

Physics Beyond Colliders QCD Working Group Report

A. Dainese¹, M. Diehl^{2,*}, P. Di Nezza³, J. Friedrich⁴, M. Gaździcki^{5,6} G. Graziani⁷,
C. Hadjidakis⁸, J. Jäckel⁹, M. Lamont¹⁰ J. P. Lansberg⁸, A. Magnon¹⁰, G. Mallot¹⁰,
F. Martinez Vidal¹¹, L. M. Massacrier⁸, L. Nemenov¹², N. Neri¹³, J. M. Pawlowski^{9,*},
S. M. Puławski¹⁴, J. Schacher¹⁵, G. Schnell^{16,*}, A. Stocchi¹⁷, G. L. Usai¹⁸, C. Vallée¹⁹,
G. Venanzoni²⁰

arXiv:1901.04482 (85 pages)

Contents

1	Ove	erview	3		2.5 NA60++	42
	1.1 Proposals and physics topics		4		2.6 NA61++	46
2	Pro	posals	10		2.7 DIRAC++	49
	2.1	LHC Fixed Target	10	3	Summary of heavy-ion measurements	52
		2.1.1 Physics motivation	10			
		2.1.2 LHCb-FT	16	4	Measurements for cosmic-ray physics and for neutrino experiments	53
		2.1.3 LHCSpin	19	5	Compatibility of COMPASS++ and MUonE at the M2 beam line	60
		2.1.4 ALICE-FT	21	0	Compatibility of COMI $ASS++$ and MCOILE at the M2 beam line	00
	2.2	LHC-FT: crystals	22	6	Conclusions	68
	2.3	COMPASS++	25	0	Conclusions	00
		2.3.1 μp elastic scattering and the proton charge radius	26	L	ist of Figures	70
		2.3.2 Pion PDFs from Drell-Yan production	31			
		2.3.3 Kaon polarisability from the Primakov reaction	33	L	list of Tables	73
		2.3.4 Strange meson spectroscopy with kaon beams	35			
		2.3.5 Selected other COMPASS++ measurements and summary	37	Б	References	74
	2.4	MUonE	37			

QCD Conveners' Introduction

Markus Diehl, Jan Pawlowski, Gunar Schnell

Physics Beyond Colliders Annual Workshop CERN, 16 to 17 January 2019

	LHC FT gas			LHC FT	COMPASS++	MUonE	NA61++	NA60++	DIRAC++	
	ALICE	LHCb	LHCSpin	AFTER@LHC	crystals					
proton PDFs	×	×		×						
nuclear PDFs	×	×		×		×				
spin physics	×		×	×		×				
meson PDFs						×				
heavy ion physics	×			×				×	×	
elast. μ scattering						×	×			
chiral dynamics						×				×
magnet. moments					×					
spectroscopy						×				
measurements for										
cosmic rays and	×	×		×		×		×		
neutrino physics										

 Table 1. Schematic overview of the physics topics addressed by the studies presented in the QCD working group.

A NQF (COMPASS++/AMBER) summary for ESPP

A New QCD Facility at the M2 beam line of the CERN SPS

Document for the 2020 update of the European Strategy for Particle Physics

Abstract

This document summarises the physics interest, sensitivity reach and competitiveness of a future general-purpose fixed-target facility for Particle Physics research. Based upon the versatile M2 beam line of the CERN SPS, a great variety of measurements is proposed to address fundamental issues of Quantum Chromodynamics. In phase-1 of the project, operating with muons a complementary result on the average charged proton radius will be obtained and the elusive General Parton Distribution function E can be accessed, operating with pions the quark structure of the pion will be revealed, operating with antiprotons completely new results in the search of exotic XYZ states are expected, and operating with protons the antiproton production cross section will be measured as important input for future Dark Matter searches. Upgrading the M2 beam line in phase-2 of the project will provide unrivalled radio-frequency separated highintensity and high-energy beams. Operating with kaons the virgin field of high-precision strange-meson spectroscopy becomes accessible, the Primakoff process will be used for a first measurement of the kaon polarisability, and the Drell-Yan process opens access to the

Apparatus for Meson and Baryon Experimental Research

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

January 12, 2019

arXiv 1808.00848 CERN-SPSC-2019-003 (SPSC-I-250)

Letter of Intent:

A New QCD facility at the M2 beam line of the CERN SPS*

COMPASS++[†]/AMBER[‡]

B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42},

Jan Friedrich

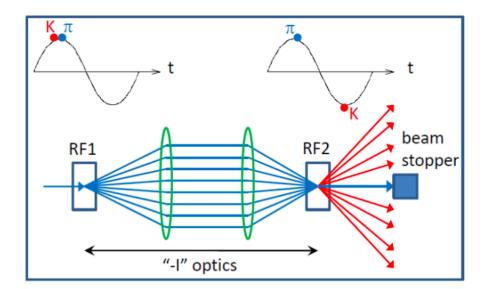
19

Lol content: Physics

	Exe	cutive S	ummary	1			
1	Introduction						
2	Had	ron phy	ysics using the muon beam	8			
	2.1	Proton	radius measurement using muon-proton elastic scattering	8			
		2.1.1	Experiments targeting the proton radius puzzle: the M2 beam line case $\ \ldots \ \ldots$	8			
		2.1.2	Formalism of elastic lepton-proton scattering	10			
		2.1.3	Measurement at the CERN M2 beam line	11			
	2.2	Hard e	xclusive reactions using muon beam and transversely polarised target $\ldots \ldots$	12			
		2.2.1	Motivations for a measurement of the GPD E $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	12			
		2.2.2	Measurements of Deeply Virtual Compton Scattering	13			
		2.2.3	Measurements of Deeply Virtual Meson Production	15			
3	Had	ron phy	vsics using conventional hadron beams	17			
	3.1	Drell-	Yan and charmonium production using conventional hadron beams	17			
		3.1.1	Introduction: Meson structure and the origin of nuclear mass	17			
		3.1.2	Separation of valence and sea-quark contributions in the pion $\ldots \ldots \ldots$	18			
		3.1.3	$J\!/\psi$ production mechanism and the gluon distribution in the pion	21			
		3.1.4	Nuclear dependence studies: Flavour-dependent valence modifications	23			
		3.1.5	Drell-Yan and J/ψ angular distributions	24			
		3.1.6	Run plan: physics goals and required beam time	24			
		3.1.7	Worldwide competition	26			
	3.2	Spectr	oscopy with low-energy antiprotons	27			
		3.2.1	Physics case	27			
		3.2.2	Beam line	29			
		3.2.3	Measurements	31			
		3.2.4	Experimental requirements	31			
	3.3	Measu	rement of antiproton production cross sections for Dark Matter Search	32			
		3.3.1	Physics case	32			
		3.3.2	Feasibility of the measurement	35			
		3.3.3	Competitiveness and complementarity	40			
4	Had	ron phy	ysics with RF-separated beams	42			

4.1	Beam	line	42
4.2	Spectr	oscopy of kaons	43
	4.2.1	Physics case	43
	4.2.2	Previous measurements	45
	4.2.3	Novel analysis techniques	45
	4.2.4	Future measurements at the SPS M2 beam line $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \h$	46
	4.2.5	Planned or proposed measurements at other facilities	46
4.3	Drell-	Yan physics with high-intensity kaon and antiproton beams	47
	4.3.1	Studies of the spin structure of the nucleon with an antiproton beam $\ \ldots \ \ldots$.	47
	4.3.2	Valence-quark distributions in the kaon	49
	4.3.3	Separation of valence and sea-quark contributions in the kaon $\hdots\dots\dots\dots\dots$.	50
	4.3.4	The J/ ψ production mechanism and the gluon distribution in the kaon $\ . \ . \ .$.	51
	4.3.5	Other experiments	52
	4.3.6	Run plan: physics goals and required beam time	53
4.4	Study	of the gluon distribution in the kaon via prompt-photon production $\ldots \ldots \ldots$	53
	4.4.1	Gluon PDFs for mesons	53
	4.4.2	Prompt photons	54
	4.4.3	Prompt-photon production in COMPASS kinematics	54
4.5	Primal	koff Reactions	57
	4.5.1	Kaon polarisability	57
	4.5.2	Direct measurement of the lifetime of the neutral pion $\hfill \ldots \ldots \ldots$.	58
4.6	Vector	-meson production off nuclei by pion and kaon beams	59
	4.6.1	Physics case	59
	4.6.2	The proposed measurement	61

10 projects currently, at first stage with the available hadron/muon beams, at second: RF separated kaon and antiproton beam.


All beams we are going to use are unique worldwide

RF separated beam

- Deflection with 2 cavities
- Relative phase = 0 \rightarrow dump
- Deflection of wanted particle given by $\Delta\phi\approx \frac{\pi fL}{c}\frac{m_w^2-m_u^2}{p^2}$

To keep good separation:

L should increase as p^2 for a given $f \rightarrow$ limits the beam momentum

Initial expectations before further R&D:

 \sim 80 GeV Kaon beam \sim 110 GeV Anti-proton beam

Summary table – beam requirements

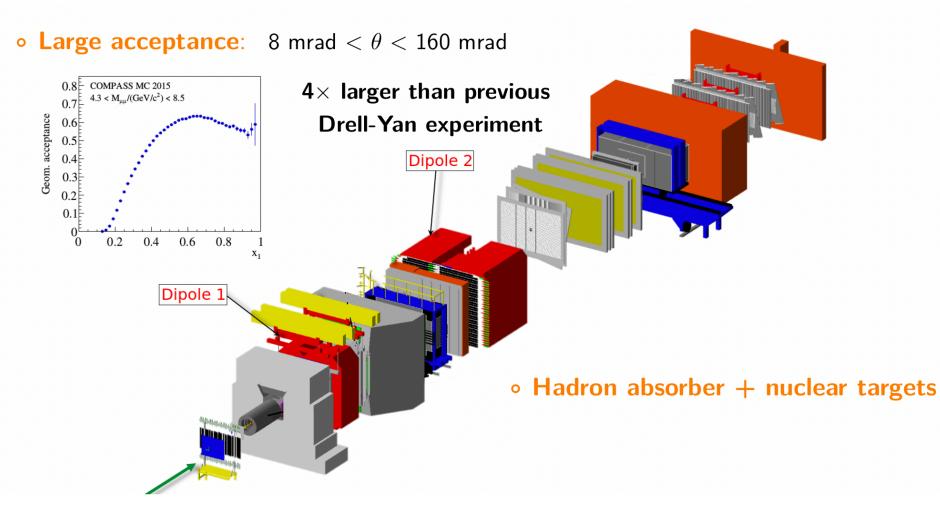
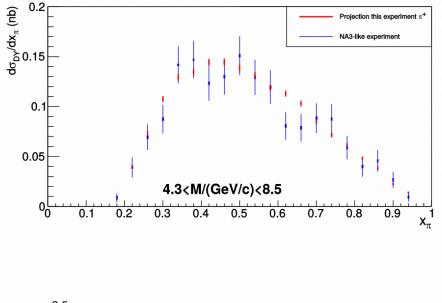
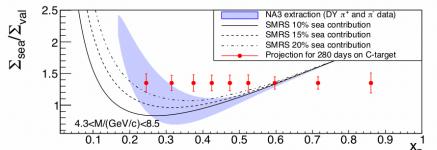

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high-pr. H2	2022 1 year	active TPC SciFi trigger silicon veto
Hard exclusive reactions	GPD E	160	107	10	μ^{\pm}	NH_3^\dagger	2022 2 years	recoil silicon, modified PT magnet
Input for DMS	production cross-section	20-280	5 · 10 ⁵	25	р	LH2, LHe	2022 1 month	LHe target
p -induced Spectroscopy	Heavy quark exotics	12, 20	$5 \cdot 10^{7}$	25	P	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{7}$	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH₃, C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarizi- bility & pion life time	~100	5 · 10 ⁶	> 10	<i>K</i> -	Ni	n/e 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	$\frac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	n/e 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> -	LH2	2026 1 year	recoil TOF forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

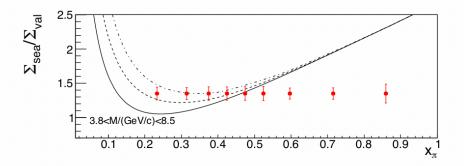
Table 5: Requirements for future programs at the M2 beam line after 2021. Standard muon beams are in blue, standard hadron beams in green, and RF-separated hadron beams in red.

Jan Friedrich



Other conventional-beam physics: Drell-Yan

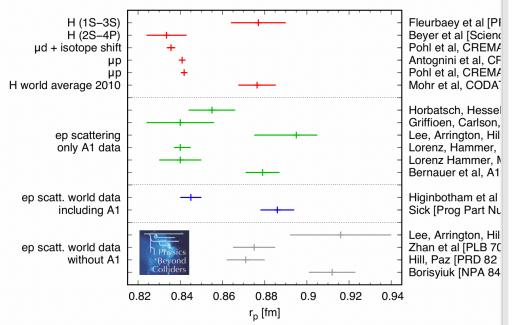




Expected accuracy compared to NA3 result

- Collect at least a factor 10 more statistics than presently available
- Aim at the <u>first precise direct</u> measurement of the pion sea contribution

 $\Sigma_{val} = \sigma^{\pi^{-}C} - \sigma^{\pi^{+}C}: \text{ only valence-valence}$ $\Sigma_{sea} = 4\sigma^{\pi^{+}C} - \sigma^{\pi^{-}C}: \text{ no valence-valence}$

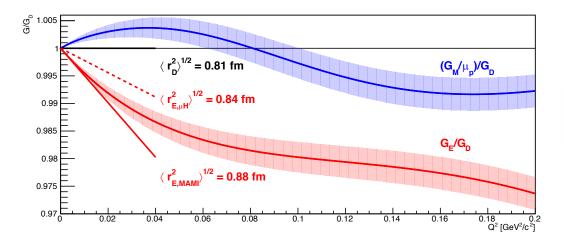


back to proton radius: from the PBC-QCD convener's summary

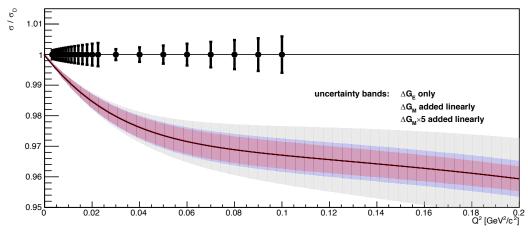
COMPASS++

- persistent discrepancies on proton charge radius r_p determined from spectroscopy (H, muonic H) and ep elastic scattering
- different fits to ep data yield widely different rp
- goal: r_p from high-energy µp elastic scattering
 - ★ advantages over ep scatt:
 - smaller QED radiative corrections
 - very small contamination from magnetic form factor

QCD Introduction PBC Annual Workshop, January 2019


proton charge radius from spectroscopy or ep scattering

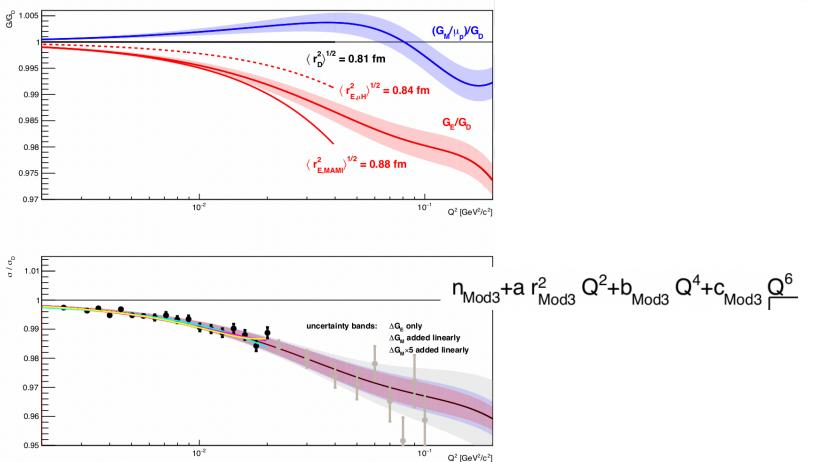
15


Elastic lepton-proton cross section

$$\frac{d\sigma^{\mu p \to \mu p}}{dQ^2} = \frac{\pi \alpha^2}{Q^4 \, m_p^2 \, \vec{p}_{\mu}^2} \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_{\mu}^2 m_p^2 - Q^2 (s - m_{\mu}^2)}{1 + \tau} - G_M^2 \frac{2m_{\mu}^2 Q^2 - Q^4}{2} \right]$$

$$\frac{1}{6}r_p^2 = -\left.\frac{d}{dQ^2}\right|_{Q^2=0} G_E(Q^2)$$

COMPASS

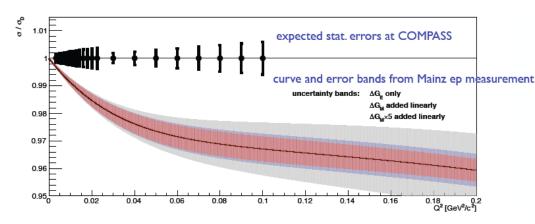


Jan Friedrich

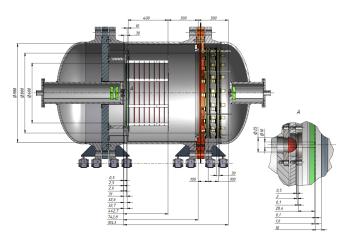
Elastic lepton-proton cross section

Only the low- Q^2 points in black were used in the various fits (polynomial in Q^2) to the pseudo-data shown as magenta (linear), purple (quadratic) and yellow (3rd order) curves. Pseudo-data points in grey require a different detector setup and are shown here for completeness. Only statistical uncertainties are shown as expected to dominate the systematic point-to-point uncertainty.

Jan Friedrich



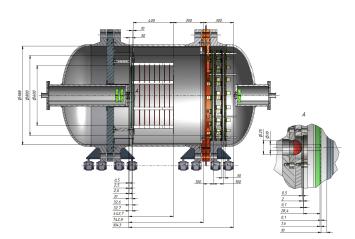
Proton Radius measurement



Physics case: determine the proton radius in high-energy muon-proton scattering

- elastic µp scattering at low Q²
- key advantages over ep
 - measure electric form factor G_E, essentially no contribution from magnetic one G_M (high E)
 - much smaller QED rad. corr. (muon mass)
- remains: theory uncertainty from fitting the form factor slope

- 100 GeV SPS M2 muon beam
- high-pressure hydrogen TPC activetarget cell (PNPI development)
- measure cross-section shape over broad Q² range 10⁻⁴...10⁻¹
- fit from 10⁻³ ... 2x10⁻² the proton radius (slope of electric form factor)

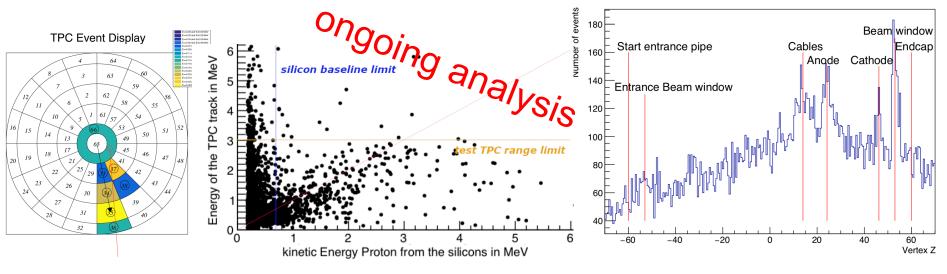


A high-pressure active target TPC

Alexey Vorobyov

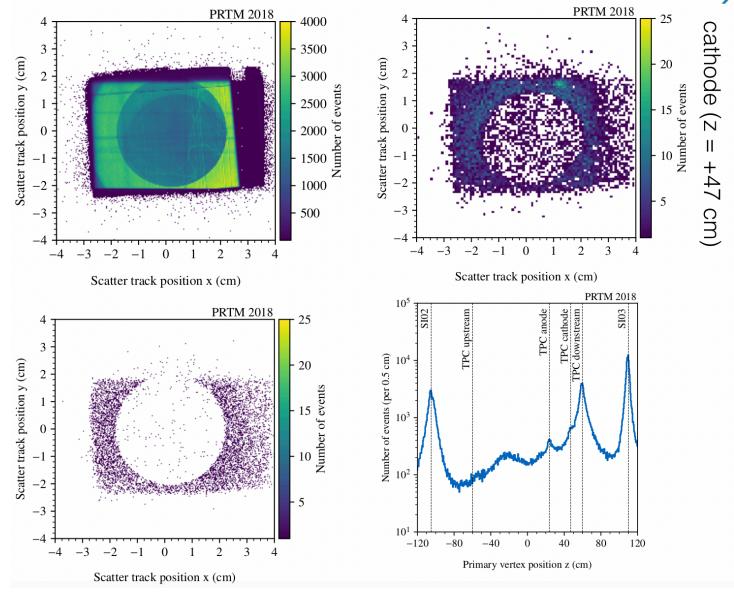
Oleg Kiselev, Evgeni Maev

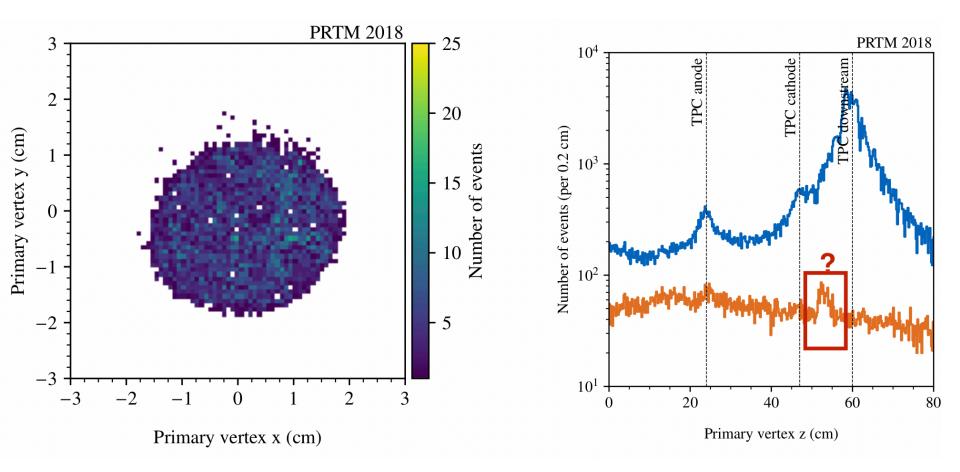
Alexander Inglessi



Test in 2018 for Proton Radius measurement

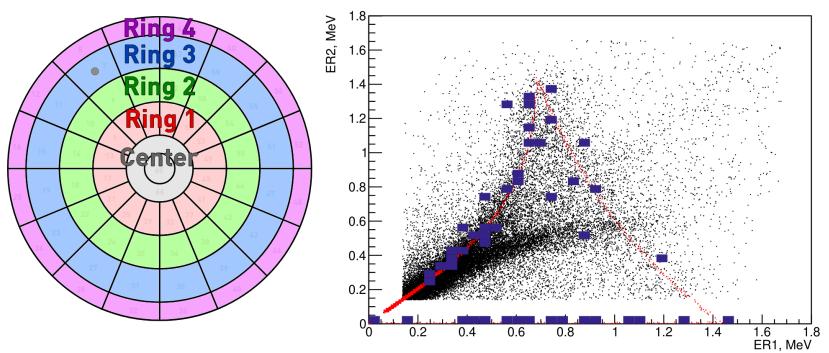
Test setup during 2018 DY run downstream COMPASS, check


- TPC operation in muon beam
- vertex reconstruction with silicon telescopes
- coincidence detection of scattered muon and recoiling proton


Test in 2018 - vertex reconstruction

Jan Friedrich

Test in 2018 – vertex reconstruction



Test in 2018 – TPC ring signal correlations

Ring energies — matched events

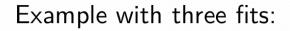
Ring 1 & 2 energies (data + simulation)

Summary

- COMPASS++ / AMBER is getting on track to a future QCD facility at the CERN M2 beam line with a broad physics program
- tests in 2018 for a proton radius measurement with a high-energy muon beam promising
- preparations for the measurement in 2021/22 enter a new phase, collaboration with SBU on event generator?

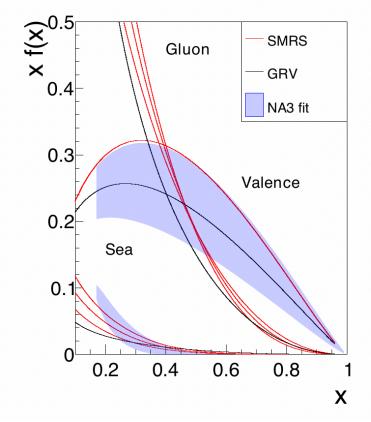
stay connected: nqf-m2.web.cern.ch -- new ideas & collaborators welcome!

Thank you for your attention!



Backup

Partonic structure of the pion

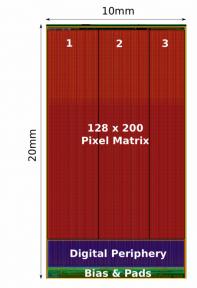


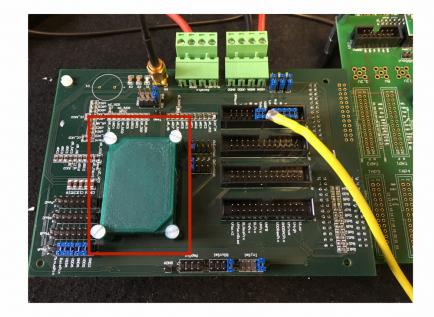
- Large untainties or not even at all
- Not enough data to directly constrain all PDFs → use of: Momentum Sum rules, constituent quark model...
- Sea no direct constraints

More data is needed, with better control of uncertainties, and full error treatment.

GRV: M. Gluck et al, Z.Phys.C 53 (1992) 651-655

COMPASS


New ideas for silicon detectors ready for continuous readout –lgor and team



CERN

Silicon prototype (MuPix8)

- 80 x 80 µm² pixel size
- 17 x 10 mm² active area
- 128 x 200 pixels
- 3 matrix partitions

- Test setup available in Munich
- Under construction

C. Dreisbach (christian.dreisbach@cern.ch) - Proton Radius Meeting, 23. January 2019

2

Test in 2018 for Proton Radius measurement

- demonstrated the measurement principle employing the active TPC and silicon detectors
- Q² range was limited by geometry
 - lower limit ca. 3x10⁻³ due to short SI detector baseline and high beam energy (ca. 180 GeV)
 - upper limit ca. 6x10⁻³ due to proton range in 8bar H₂
- observed event rate and structure roughly within expectations, calibrations and data analysis ongoing

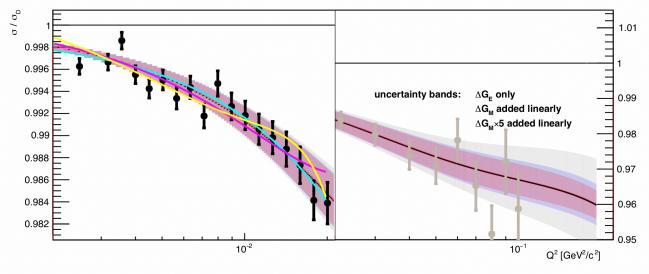
a hot physics topic – this experiment should run in 2022 at M2 and needs soon CERN support statement for realization

- physics reach of the proposed measurement acknowledged
- regarding the Q² range of the measurement 10⁻³ ... 2x10⁻² GeV² it is encouraged to extend this range, especially to lower values, for a better control of the "fit ambiguities"

our answer:

- yes, extending the experimental sensitivity to as-low-as possible Q² values (beyond 10⁻³) is to be taken into account in the design of the set-up (will require ~10m target region for the silicon telescopes)
- low-Q² data points will be useful and meaningful in terms of systematics control
- the expected form factor impact on the cross-section is below 0.1% in that region, and thus of a similar size as other expected (experimental) systematic effects. Accordingly, those points are of limited use in terms of discriminating theoretical uncertainties (except for excluding unrealistic scenarios)

all in all positive feedback from PBC, SPSC to be awaited – expected soon!



Feedback from PBC QCD working group

COMPASS++

• demanding measurement: low scatt. angle, trigger, new TPC

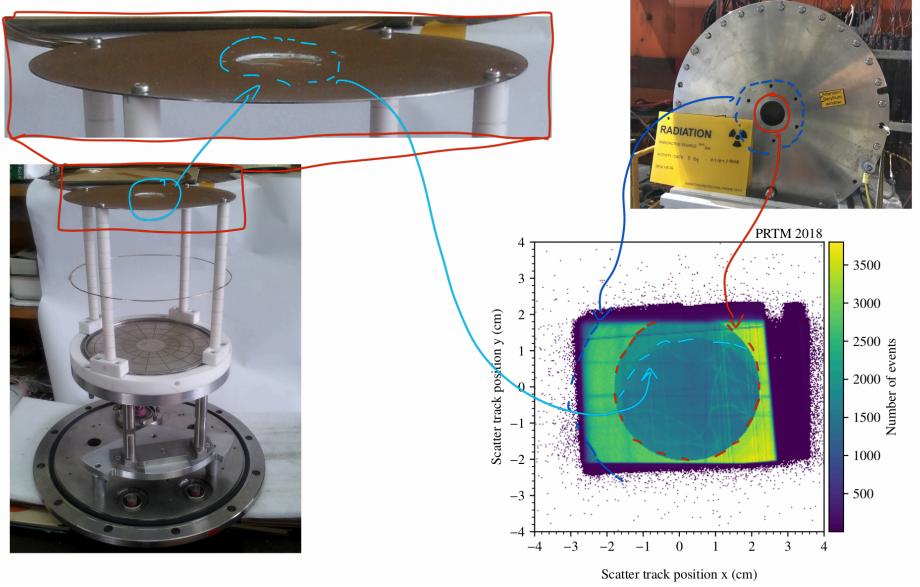
- pseudodata and fits
 - ★ preferred fit gives $\Delta_{\text{stat}} r_p = 0.013 \text{ fm}$
 - ★ experimental and fitting uncertainties to be quantified

16

COMPASS in 2021/22

- For 2021, COMPASS has proposed a transverse-deuteron run with muon beam
- Recommended by SPSC and approved by the research board in 2018 for a beam time (of 150 days, as specified in the proposal assuming standard efficiencies for SPS and COMPASS)
- In 2010, this was achieved by using the full available beam of the year
- In 2021, SPS and the spectrometer have to restart after a 2-year break
- Possible competition from the NA64mu proposal and MUonE test, aim at muon beam in 2021

we should get prepared for readiness of the proton radius experiment for starting in 2021



Many thanks are due to COMPASS Proton Radius Enthusiasts TUM team PNPI team GSI team Bonn team COMPASS

Thank you!

Charge radius: definition and model dependence

Determination of the rms radius from a form factor measurement

• the rms radius of a charge distribution seen in lepton scattering is *defined* as the slope of the electric form factor at vanishing momentum transfer Q^2

$$\langle r_E^2 \rangle = -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2 \to Q^2}$$

- elastic scattering experiments provide data for G_E at non-vanishing Q^2 and thus require an extrapolation procedure towards zero \rightarrow mathematical ansatz may take more or less bounds into account (physics/theory/whatever motivated)
- Any approach (Padé, CF, DI, CM,...) *must* boil down to a series expansion

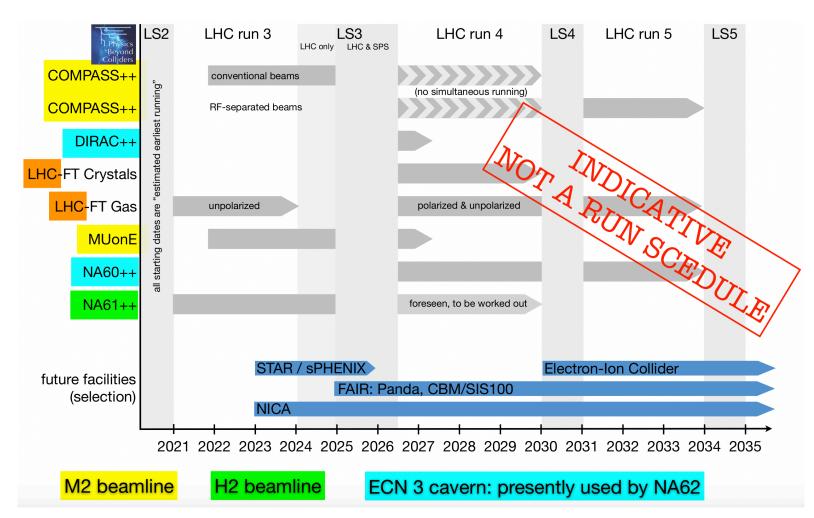
$$G_E(Q^2) = 1 + c_2 Q^2 + c_4 Q^4 + \dots$$

introducing possibly very different assumptions on the coefficients c_i

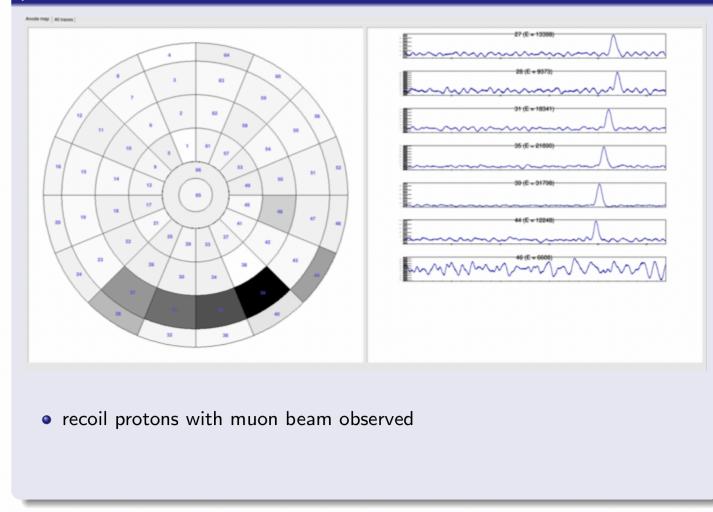
• recipe for experimenters: measure a sufficiently large range of Q^2 down to values as small as possible and as precise as possible

Radiative corrections for electron and muon scattering

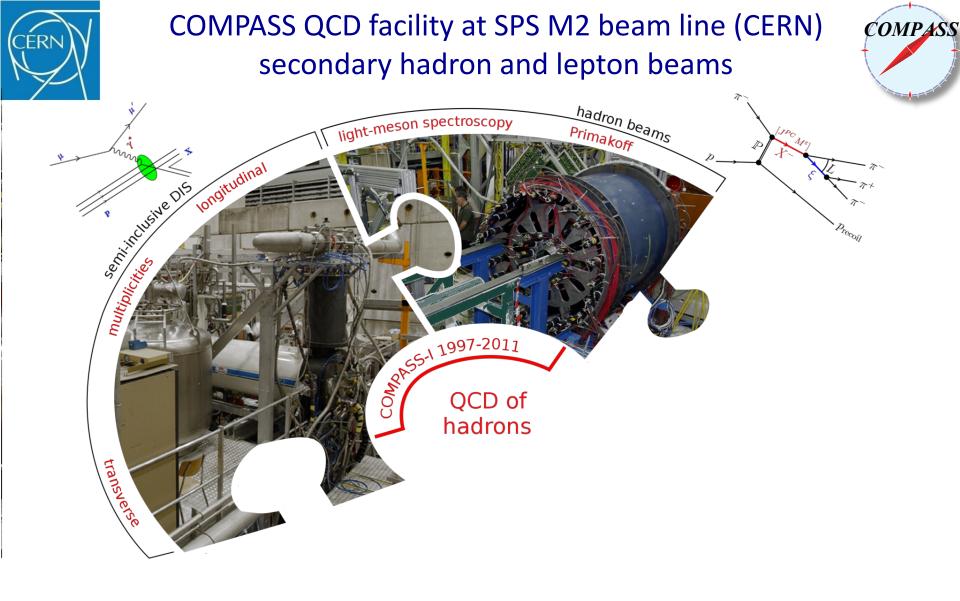
QED radiative corrections

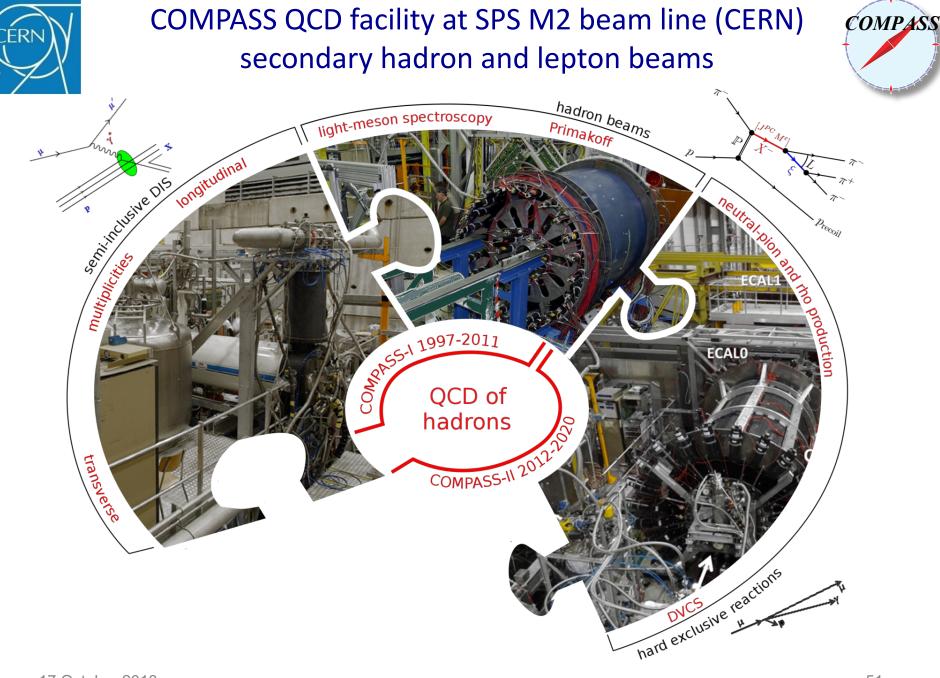


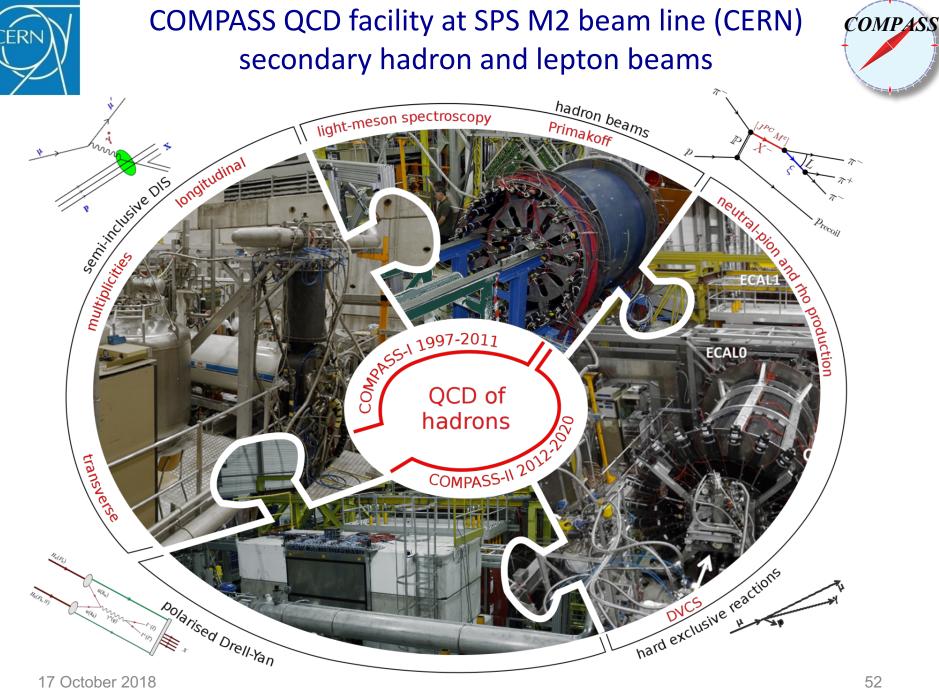
- for soft bremsstrahlung photon energies $(E_{\gamma}/E_{beam} \sim 0.01)$, QED radiative corrections amount to ~ 15 -20% for electrons, and to $\sim 1.5\%$ for muons
- important contribution to the uncertainty of elastic scattering intensities: *change* of this correction over the kinematic range of interest
- check: impact of exponantiation procedure (stricty valid only for vanishing photon energies): e^- : 2 4%, μ^- : 0.1%
- integrating the radiative tail out to large fraction of beam energy: shifts the correction to smaller values, but only *increases* the uncertainty



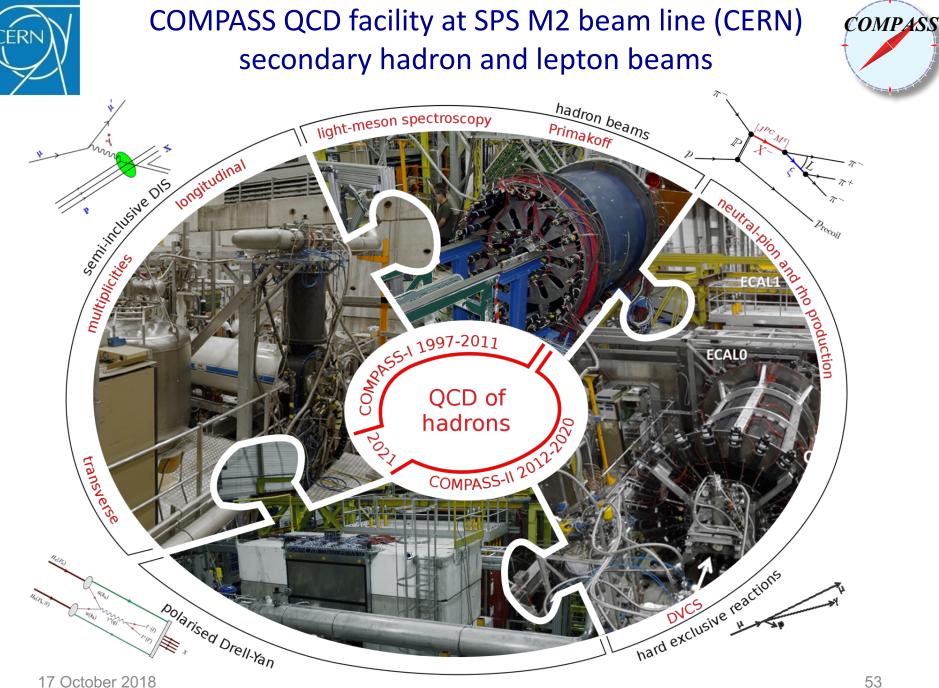
performance of TPC




Lol content: Instrumentation


5	Instrumentation			63
	5.1 Summary table		ary table	63
	5.2	5.2 General upgrades		64
		5.2.1	Front-end electronics and DAQ	64
		5.2.2	Large-area PixelGEM detectors	64
		5.2.3	Large-area multi-pattern gaseous detectors (MPGD)	65
		5.2.4	CEDARs at high rates	65
		5.2.5	Hadron PID perspectives: RICH	66
	5.3	3 Specific upgrades		
	 5.3.1 Overview		66	
			h-pressure hydrogen TPC for proton-radius measurement	67
	5.3.3	3 Rec	coil detector with polarised target	70
	5.3.4	4 Tar	get spectrometer for spectroscopy with low-energy antiprotons	71
	5.3.5	5 Act	ive absorber for Drell-Yan measurements with an RF-separated hadron beam	73

It is difficult to give exact cost estimate right now: it stays in the range 10-20 MCHF


COMPASS

Jan Friedrich

Jan Friedrich